Natural properties

The beneficial properties of copper have been used for centuries in a wide range of applications: treating vines against mildew, treating swimming pools against algae, antifouling products and paints in the marine environment.

In addition to its well-known historical uses, copper has been used for its action against viruses and bacteria for thousands of years.

During the cholera epidemics in Paris in 1832, 1849 and 1852, scientists were able to observe that copper workers did not develop this disease (Dollwet H.H and Sorensen J.RJ, 1985).

The antimicrobial properties of copper have been emphasized in numerous research studies around the world over the past 30 years:

  • On copper surfaces, viruses, bacteria and fungi (microscopic fungi) are destroyed by copper.
  • Multi-resistant bacteria are also destroyed by copper (Gregor Grass, 2011).

On inert surfaces, these same bacteria can survive for days, weeks or even months. Thus, the lifespan of microbes on an inert, uncleaned and undisinfected surface is very long (Axel Kramer, 2006).

  • Norovirus (causes gastroenteritis): up to 2 months
  • Staphylococcus aureus: up to 7 months
  • Escherichia coli (E-coli): up to 16 months

A vital trace element in functional doses for all plants and animals (O'Gorman J, Humphreys H, 2012), copper is naturally present in the human body and is essential for the proper functioning of many physiological functions: nervous and cardiovascular system, iron absorption, bone growth, immune system and cholesterol regulation.

These properties make copper an essential ally of infection risk mitigation in buildings, public transports and public areas with common touch surfaces.

Copper in the fight against multi-resistant bacteria

In addition to the scarcity of new antibiotics on the market in recent years, the increase in bacterial resistance worldwide represents a major threat to public health. The recent emergence of multi-drug resistant bacteria (MDRBs) that are insensitive to most, if not all, available antibiotics raises fears of a return to the preantibiotic era.

The human and economic cost of BMR infections continues to grow.

Studies carried out by the University of Reims Champagne Ardenne (URCA) show that antibiotic-resistant (BMR) bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) die when deposited on Steriall surfaces.

Various examples of scientific research on the impact of copper and copper alloys against bacteria and viruses:

URCA and Lebronze alloys partners publications on Steriall® products:

2018 : Colin M, Klingelschmitt F, Charpentier E, Josse J, Kanagaratnam L, De Champs C, Gangloff SC. Copper Alloy Touch Surfaces in Healthcare Facilities: An Effective Solution to Prevent Bacterial Spreading. Source

2020 : Colin, M., Charpentier, E., Klingelschmitt, F., Bontemps, C., De Champs, C., Reffuveille, F., & Gangloff, S. C. (2020). Specific antibacterial activity of copper alloy touch surfaces in five long-term care facilities for older adults. Journal of Hospital Infection, 104(3), 283-292. Source

2020 : Zerbib, S., Vallet, L., Muggeo, A., de Champs, C., Lefebvre, A., Jolly, D., & Kanagaratnam, L. (2020). Copper for the Prevention of Outbreaks of Health Care–Associated Infections in a Long-term Care Facility for Older Adults. Journal of the American Medical Directors Association, 21(1), 68-71. Source

Other recently published scientific articles:

2008 : Mehtar S., Wiid I., Todorov S.D. The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: An in-vitro study. J. Hosp. Infect. 2008;68:45–51. doi: 10.1016/j.jhin.2007.10.009. [PubMed] [CrossRef]

2008 : Wheeldon L.J., Worthington T., Lambert P.A., Hilton A.C., Lowden C.J., Elliott T.S. Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium difficile: The germination theory. J. Antimicrob. Chemother. 2008;62:522–525. doi: 10.1093/jac/dkn219. [PubMed] [CrossRef]

2010 : Casey A.L., Adams D., Karpanen T.J., Lambert P.A., Cookson B.D., Nightingale P., Miruszebko L., Shillam R., Christian P., Elliot T.S.J. Role of copper in reducing hospital environment contamination. J. Hosp. Infect. 2010;74:72–77. doi: 10.1016/j.jhin.2009.08.018. [PubMed] [CrossRef]

2010 : Weaver L., Noyce J.O., Michels H.T., Keevil C.W. Potential action of copper surfaces on meticillin-resistant Staphylococcus aureus. J. Appl. Microbiol. 2010;109:2200–2205. doi: 10.1111/j.1365-2672.2010.04852.x. [PubMed] [CrossRef]

2010 : Mikolay A., Huggett S., Tikana L., Grass G., Braun J., Nies D.H. Survival of bacteria on metallic copper surfaces in a hospital trial. Appl. Microbiol. Biotechnol. 2010;87:1875–1879. doi: 10.1007/s00253-010-2640-1. [PubMed] [CrossRef]

2011 : Grass G., Rensing C., Solioz M. Metallic copper as an antimicrobial surface. Appl. Environ. Microb. 2011;77:1541–1547. doi: 10.1128/AEM.02766-10. [PMC free article] [PubMed] [CrossRef]

2011 : Quaranta D., Krans T., Santo C.E., Elowsky C.G., Domaille D.W., Chang C.J., Grass G. Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces. Appl. Environ. Microb. 2011;77:416–426. doi: 10.1128/AEM.01704-10. [PMC free article] [PubMed] [CrossRef]

2011 : Santo C.E., Lam E.W., Elowsky C.G., Quaranta D., Domaille D.W., Chang C.J., Grass G. Bacterial killing by dry metallic copper surfaces. Appl. Environ. Microb. 2011;77:794–802. doi: 10.1128/AEM.01599-10. [PMC free article] [PubMed] [CrossRef]

2012 : Rai S., Hirsch B.E., Attaway H.H., Nadan R., Fairey S., Hardy J., Miller G., Armellino D., Moran W.R., Sharpe P., et al. Evaluation of the antimicrobial properties of copper surfaces in an outpatient infectious disease practice. Infect. Control Hosp. Epidemiol. 2012;33:200–201. doi: 10.1086/663701.[PubMed] [CrossRef]

2012 : Sunada K., Minoshima M., Hashimoto K. Highly efficient antiviral and antibacterial activities of solid-state cuprous compounds. J. Hazard. Mater. 2012;235:265–270. doi: 10.1016/j.jhazmat.2012.07.052.[PubMed] [CrossRef]

2012 : Karpanen T.J., Casey A.L., Lambert P.A., Cookson B.D., Nightingale P., Miruszenko L., Elliott T.S. The antimicrobial efficacy of copper alloy furnishing in the clinical environment: A crossover study. Infect. Control Hosp. Epidemiol. 2012;33:3–9. doi: 10.1086/663644. [PubMed] [CrossRef]

2012 : Schmidt M.G., Attaway H.H., Sharpe P.A., John J., Jr., Sepkowitz K.A., Morgan A., Fairey S.E., Singh S., Steed L.L., Cantey J.R., et al. Sustained reduction of microbial burden on common hospital surfaces through introduction of copper. J. Clin. Microbiol. 2012;50:2217–2223. doi: 10.1128/JCM.01032-12.[PMC free article] [PubMed] [CrossRef]

2013 : Warnes S.L., Keevil C.W. Inactivation of norovirus on dry copper alloy surfaces. PLoS ONE. 2013;8:e75017 doi: 10.1371/journal.pone.0075017. [PMC free article] [PubMed] [CrossRef]

2013 : Mathews S., Hans M., Mücklich F., Solioz M. Contact killing of bacteria on copper is suppressed if bacteria-metal contact is prevented and is induced on iron by copper ions. Appl. Environ. Microb. 2013:AEM-03608. doi: 10.1128/AEM.03608-12. [PMC free article] [PubMed] [CrossRef]

2015 : Warnes S.L., Summersgill E.N., Keevil C.W. Inactivation of murine norovirus on a range of copper alloy surfaces is accompanied by loss of capsid integrity. Appl. Environ. Microb. 2015;81:1085–1091. doi: 10.1128/AEM.03280-14. [PMC free article] [PubMed] [CrossRef]

2015 : Warnes S.L., Little Z.R., Keevil C.W. Human coronavirus 229E remains infectious on common touch surface materials. MBio. 2015;6:e01697-15. doi: 10.1128/mBio.01697-15. [PMC free article] [PubMed] [CrossRef]

2016 : Weaver L., Michels H.T., Keevil C.W. Survival of Clostridium difficile on copper and steel: Futuristic options for hospital hygiene. J. Hosp. Infect. 2008;68:145–151. doi: 10.1016/j.jhin.2007.11.011. [PubMed] [CrossRef]

2016 : Liu S., Zhang X.X. Small colony variants are more susceptible to copper-mediated contact killing for Pseudomonas aeruginosa and Staphylococcus aureus. J. Med. Microbiol. 2016;65:1143–1151. doi: 10.1099/jmm.0.000348. [PubMed] [CrossRef]

2016 : Schmidt M.G., von Dessauer B., Benavente C., Benavente C., Benadof D., Cifuentes P., Elgueta A., Duran C., Navarrete M.S. Copper surfaces are associated with significantly lower concentrations of bacteria on selected surfaces within a pediatric intensive care unit. Am. J. Infect. Control. 2016;44:203–209. doi: 10.1016/j.ajic.2015.09.008. [PubMed] [CrossRef]

2016 : Hinsa-Leasure S.M., Nartey Q., Vaverka J., Schmidt M.G. Copper alloy surfaces sustain terminal cleaning levels in a rural hospital. Am. J. Infect. Control. 2016;44:e195–e203. doi: 10.1016/j.ajic.2016.06.033. [PubMed] [CrossRef]

2017 : Inkinen J., Mäkinen R., Keinänen-Toivola M.M., Nordström K., Ahonen M. Copper as an antibacterial material in different facilities. Lett. Appl. Microbiol. 2017;64:19–26. doi: 10.1111/lam.12680. [PubMed] [CrossRef]

2018 : Ibrahim Z., Petrusan A.J., Hooke P., Hinsa-Leasure S.M. Reduction of bacterial burden by copper alloys on high-touch athletic center surfaces. Am. J. Infect. Control. 2018;46:197–201. doi: 10.1016/j.ajic.2017.08.028. [PubMed] [CrossRef]